Đề cương ôn tập môn Toán Lớp 9 - Trường THCS Mai Xuân Thưởng
CÁC BÀI TOÁN RÚT GỌN:
A.Các bước thực hiên:
Phân tích tử và mẫu thành nhân tử (rồi rút gọn nếu được)
Tìm ĐKXĐ của biểu thức: là tìm TXĐ của từng phân thức rồi kết luận lại.
Quy đồng, gồm các bước:
+ Chọn mẫu chung : là tích các nhân tử chung và riêng, mỗi nhân tử lấy số mũ lớn nhất.
+ Tìm nhân tử phụ: lấy mẫu chung chia cho từng mẫu để được nhân tử phụ tương ứng.
+ Nhân nhân tử phụ với tử – Giữ nguyên mẫu chung.
Bỏ ngoặc: bằng cách nhân đa thức hoặc dùng hằng đẳng thức.
Thu gọn: là cộng trừ các hạng tử đồng dạng.
Phân tích tử thành nhân tử ( mẫu giữ nguyên).
Rút gọn.
B.Bài tập luyện tập:
Bài 1 Cho biểu thức : A = với ( x >0 và x ≠ 1)
a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại .
Bài 2. Cho biểu thức : P = ( Với a 0 ; a 4 )
a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1.
Bài 3: Cho biểu thức A =
a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A;
c)Với giá trị nào của x thì A< -1.
Bài 4: Cho biểu thức A = ( Với )
Tóm tắt nội dung tài liệu: Đề cương ôn tập môn Toán Lớp 9 - Trường THCS Mai Xuân Thưởng
là tích các nhân tử chung và riêng, mỗi nhân tử lấy số mũ lớn nhất. + Tìm nhân tử phụ: lấy mẫu chung chia cho từng mẫu để được nhân tử phụ tương ứng. + Nhân nhân tử phụ với tử – Giữ nguyên mẫu chung. Bỏ ngoặc: bằng cách nhân đa thức hoặc dùng hằng đẳng thức. Thu gọn: là cộng trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử ( mẫu giữ nguyên). Rút gọn. B.Bài tập luyện tập: Bài 1 Cho biểu thức : A = với ( x >0 và x ≠ 1) a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại . Bài 2. Cho biểu thức : P = ( Với a 0 ; a 4 ) a) Rút gọn biểu thức P; b)Tìm giá trị của a sao cho P = a + 1. Bài 3: Cho biểu thức A = a)Đặt điều kiện để biểu thức A có nghĩa; b)Rút gọn biểu thức A; c)Với giá trị nào của x thì A< -1. Bài 4: Cho biểu thức A = ( Với ) a) Rút gọn A; b) Tìm x để A = - 1. Bài 5: Cho biểu thức : B = a) Tìm TXĐ rồi rút gọn biểu thức B; b) Tính giá trị của B với x =3; c) Tìm giá trị của x để . Bài 6: Cho biểu thức : P = a) Tìm TXĐ; b) Rút gọn P; c) Tìm x để P = 2. Bài 7: Cho biểu thức: Q = ( a) Tìm TXĐ rồi rút gọn Q; b) Tìm a để Q dương; c) Tính giá trị của biểu thức biết a = 9- 4. Bài 8: Cho biểu thức: M = a) Tìm ĐKXĐ của M; b) Rút gọn M. Tìm giá trị của a để M = - 4. Bài 9 : Cho biểu thức : K = a) Tìm x để K có nghĩa; b) Rút gọn K; c) Tìm x khi K= ; Bài 10 : Cho biểu thức: G= a)Xác định x để G tồn tại; b)Rút gọn biểu thức G; c)Tính giá trị của G khi x = 0,16; d)Tìm gía trị lớn nhất của G; e)Tìm x Î Z để G nhận giá trị nguyên; Bài 11 : Cho biểu thức: P= Với x ≥ 0 ; x ≠ 1 a)Rút gọn biểu thức trên; b)Chứng minh rằng P > 0 với mọi x≥ 0 và x ≠ 1. Bài 12 : cho biểu thức Q= a)Tìm a dể Q tồn tại; b)Chứng minh rằng Q không phụ thuộc vào giá trị của a. Bài 13: Cho biểu thức : A= a)Rút gọn A b)Tìm các số nguyên dương x để y = 625 và A < 0,2 Bài 14:Xét biểu thức: P= (Với a ≥0 ; a ≠ 16) 1)Rút gọn P; 2)Tìm a để P =-3; 3)Tìm các số tự nhiên a để P là số nguyên tố. Chương II HÀM SỐ - HÀM SỐ BẬC ...có cách vẽ đồ thị hàm số y = ax+b: Cho x = 0 => y = b => điểm (0;b) thuộc đồ thị hàm số y = ax + b. Cho y = 0 => x = => điểm (;0) thuộc đồ thị hàm số y = ax + b. Đường thẳng qua hai điểm (0;b) và ( ;0) là đồ thị hàm số y = ax + b Ví dụ: Vẽ đồ thị hàm số : y = 2x + 1 Giải: Cho x = 0 => y =1 => điểm (0;1) thuộc đồ thị hàm số y = 2x + 1 Cho y = 0 => x = => điểm ( ;0) thuộc đồ thị hàm số y = 2x + 1 Đường thẳng qua hai điểm (0;1) và ( ;0) là đồ thị hàm số y = 2x + 1 Điều kiện để hai đường thẳng: (d1): y = ax + b; (d2): y = a,x + b, : + Cắt nhau: (d1) cắt (d2). */. Để hai đường thẳng cắt nhau trên trục tung thì cần thêm điều kiện . */. Để hai đường thẳng vuông góc với nhau thì : + Song song với nhau: (d1) // (d2). + Trùng nhau: (d1) (d2). Ví dụ: Cho hai hàm số bậc nhất: y = (3 – m)x + 2 (d1) y = 2x – m (d2) a)Tìm giá trị của m để đồ thị hai hàm số song song với nhau; b) Tìm giá trị của m để đồ thị hai hàm số cắt nhau; c) Tìm giá trị của m để đồ thị hai hàm số cắt nhau tại một điểm trên trục tung. Giải: a)(d1)//(d2) b) (d1) cắt (d2) c) (d1) cắt (d2) tại một điểm trên trục tung Hệ số góc của đường thẳng y = ax + b là a. + Cách tính góc tạo bởi đường thẳng với trục Ox là dựa vào tỉ số lượng giác -Trường hợp: a > 0 thì góc tạo bởi đường thẳng với trục Ox là góc nhọn. -Trường hợp: a < 0 thì góc tạo bởi đường thẳng với trục Ox là góc tù () Ví dụ 1: Tính góc tạo bởi đường thẳng y = 2x + 1 với trục Ox Giải: Ta có: Vậy góc tạo bởi đường thẳng y = 2x + 1 với trục Ox là: Ví dụ 2: Tính góc tạo bởi đường thẳng y = - 2x + 1 với trục Ox. Ta có: Vậy góc tạo bởi đường thẳng y = - 2x + 1 với trục Ox là: Các dạng bài tập thường gặp: Dạng1: Xác dịnh các giá trị của các hệ số để hàm số đồng biến, nghịch biến, Hai đường thẳng song song; cắt nhau; trùng nhau. Phương pháp: Xem lại các ví dụ ở trên. - -Dạng 2: Vẽ đồ thị hàm số y = ax + b ¤Xác định toạ độ giao điểm của hai đường thẳng (d1): y ...x0; y0) và điểm Q(x1; y1). Phương pháp: + Thay x0; y0 vào y = ax + b ta được phương trình y0 = ax0 + b (1) + Thay x1; y1 vào y = ax + b ta được phương trình y1 = ax1 + b (2) + Giải hệ phương trình ta tìm được giá trị của a và b. + Thay giá trị của a và b vào y = ax + b ta được phương trình đường thẳng cần tìm. -Dạng 6: Chứng minh đường thẳng đi qua một điểm cố định hoặc chứng minh đồng quy: Ví dụ: Cho các đường thẳng : (d1) : y = (m2-1) x + m2 -5 ( Với m 1; m -1 ) (d2) : y = x +1 (d3) : y = -x +3 a) C/m rằng khi m thay đổi thì d1 luôn đi qua 1điểm cố định . b) C/m rằng khi d1 //d3 thì d1 vuông góc d2 c) Xác định m để 3 đường thẳng d1 ;d2 ;d3 đồng qui Giải: a) Gọi điểm cố định mà đường thẳng d1 đi qua là A(x0; y0 ) thay vào PT (d1) ta có : y0 = (m2-1 ) x0 +m2 -5 Với mọi m => m2(x0+1) -(x0 +y0 +5) = 0 với mọi m ; Điều này chỉ xảy ra khi :x0+ 1 = 0 x0 + y0 + 5 = 0 suy ra : x0 = -1 ; y0 = - 4 Vậy điểm cố định là A (-1; - 4) b) +Ta tìm giao điểm B của (d2) và (d3) : Ta có pt hoành độ : x+1 = - x +3 => x =1 Thay vào y = x +1 = 1 +1 =2 Vậy B (1;2) Để 3 đường thẳng đồng qui thì (d1) phải đi qua điểm B nên ta thay x =1 ; y = 2 vào pt (d1) ta có: 2 = (m2 -1) .1 + m2 -5=>m2 = 4 => m = 2 và m = -2 Vậy với m = 2 hoặc m = - 2 thì 3 đường thẳng trên đồng qui. Bài tập: Bài 1: Cho hai đường thẳng (d1): y = ( 2 + m )x + 1 và (d2): y = ( 1 + 2m)x + 2 1) Tìm m để (d1) và (d2) cắt nhau . 2) Với m = – 1 , vẽ (d1) và (d2) trên cùng mặt phẳng tọa độ Oxy rồi tìm tọa độ giao điểm của hai đường thẳng (d1) và (d2) bằng phép tính. Bài 2: Cho hàm số bậc nhất y = (2 - a)x + a . Biết đồ thị hàm số đi qua điểm M(3;1), hàm số đồng biến hay nghịch biến trên R ? Vì sao? Bài 3: Cho hàm số bậc nhất y = (1- 3m)x + m + 3 đi qua N(1;-1) , hàm số đồng biến hay nghịch biến ? Vì sao? Bài 4: Cho hai đường thẳng y = mx – 2 ;(mvà y = (2 - m)x + 4 ;. Tìm điều kiện của m để hai đường thẳng trên: a)Song song; b)Cắt nhau . Bài 5: Với giá trị nà
File đính kèm:
- de_cuong_on_tap_mon_toan_lop_9_truong_thcs_mai_xuan_thuong.doc